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In this work finite element simulations are used based on the micro structure of polymers
in order to transfer the information of the micro level to the macro level. The microscopic
structure of polymers is characterized by a three-dimensional network consisting of
randomly oriented chain-like macromolecules linked together at certain points. Different
techniques are used to simulate the rubber-like material behaviour of such networks. These
techniques range from molecular dynamics to the finite element method.

The proposed approach is based on a so-called unit cell. This unit cell consists of one
tetrahedral element and six truss elements. To each edge of the tetrahedron one truss
element is attached which models the force-stretch behaviour of a bundle of polymer
chains. The proposed method provides the possibility to observe how changes at the
microscopic level influence the macroscopic material behaviour. Such observations were
carried out in [1]. The main focus of this work is the validation of the proposed approach.
Therefore the model is compared to different experimental data and other
statistically-based network models describing rubber-like material behaviour.
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
One characteristic of polymers is their microscopic
structure which consists of long, randomly oriented
molecule chains. These chains are linked together
at certain points. In this way an arbitrary three-
dimensional network is formed. There exist different
interactions between the particular atoms (see e.g. [2–
4]).

Several authors have studied the micro mechanical
behaviour by means of molecular dynamics simulations
(cp. [5–7]). These approaches, based on techniques
such as the Monte Carlo method or the bond fluctu-
ation method, have in common that in the discretized
model each chain or even chain link is represented
separately. In this way for instance the vulcanization
process can be modelled very realistically. However,
such simulations require an extreme computational
effort.

Using the tool of statistical mechanics the numer-
ical modelling can be noticeably simplified (see e.g.
[8–13]). Based on the assumption that the bonds of
the network are permanent these latter concepts use
the following four assumptions. First of all, all chains
of the network have the same length n l in the to-
tally extended state (n number of chain links, l aver-
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age length of a chain link). Secondly, the distribution
of the end-to-end distances r of the chains is calcu-
lated by means of Gaussian statistics. Thirdly, the de-
formation of the material is affine and fourthly there
is no change in volume. Following these assumptions
Treloar [12] and [13] derived the well-known “Neo-
Hookean” free energy function (per reference volume)
W = (µ/2) (λ2

1+λ2
2+λ2

3−3) for moderate strains where
λi (i = 1, 2, 3) represent the principal stretches and
µ = N k � denotes the rubber shear modulus (N num-
ber of chains per reference volume, k Boltzmann’s con-
stant, � absolute temperature). More recent models (cp.
[14–17]) are able to predict the material response also
for higher strains. The mentioned concepts are based
on the Langevin statistics which was originally sug-
gested by [18]. However, also the more recent network
theories work with the first, the third and the fourth
assumption.

Alternatively rubber-like materials can be described
by phenomenological models, see [19–22]. The best
agreement with experiments is displayed by the model
of Swanson [22] which, however, needs 16 parameters.
The disadvantage of the continuum-based models with
respect to the models based on chain statistics lies in
the fact that the material parameters are not physically
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Figure 1 Rubber boot of a joint: (a) meshed geometry (truss elements only), (b) deformed mesh.

motivated. As such they can only be found by means of
experiments. This fitting procedure can be very elabo-
rate if the number of parameters is large.

To overcome these problems in the present contribu-
tion a micro mechanically-based approach is preferred.
In comparison to earlier works we aim to avoid the
four assumptions mentioned before. The transfer of the
known micro mechanical information about the ma-
terial to the macroscopic level by means of the finite
element method is crucial to the work.

In the present approach the microscopic structure of
polymers is represented by an assembly of non-linear
truss elements. Each truss element models the micro
mechanical force-stretch behaviour of a certain group
of chains. With six of them and one tetrahedral ele-
ment we establish a so-called unit cell in such a way
that the truss elements lie on the edges of the tetrahe-
dral element. The tetrahedral element serves to model
the hydrostatic pressure built up in one unit cell. Using
a random assembling procedure by help of a random
generator we are in a position to model arbitrary ge-
ometries. Another possibility to generate networks as
described before is the use of mesh generators as they
are implemented in every commercial finite element
program to produce a mesh consisting of tetrahedral
element only. In a second step one truss element is to
be attached to each edge of each tetrahedral element.
A typical example of such networks is shown in Fig. 1.
Fig. 1a shows the meshed geometry of a rubber boot ap-
plied for example in the automobile industry to protect
joints. (Due to the shape of the geometry it is possi-
ble to use the symmetry condition, therefore we work
only with one half of the rubber boot.) The geometry
is loaded on the top by a pressure load P and a bending
moment M. Fig. 1b gives a description of the deformed
geometry. This small example shows the possibilities
to model arbitrary geometries.

In contrast to earlier concepts (see e.g. [10, 14] and
[23]) the present method offers the possibility to in-
clude non-affinity, arbitrary chain arrangements, in-
elastic material behaviour and finally the possibility
to simulate filled polymer networks (cp. [1] and [24]).

The paper is structured as follows. Section 2 gives
a short introduction into the derivation of the finite
element formulation which is used in this approach.

Detailed information about the derivation can be found
in [1]. In Section 3 the proposed model is validated.
Therefore we first compare our results with experi-
mental data taken from Treloar [25] and with other
simulation data achieved with alternative statistically-
based material laws. In a second step the presented
concept is applied to three different rubber mixtures.
The paper closes with a summary.

2. Finite element formulation
The finite element unit cell consists of one tetrahedral
element and six truss elements lying on each edge of
the tetrahedral element, see Fig. 2. Due to the fact, that
the truss elements as well as the tetrahedral elements
have the same number of degree-of-freedoms per node,
the assembling procedure of the unit cell is possible and
easy to realize. According to the split into one tetra-
hedral element and six truss elements the Helmholtz
free energy function of the unit cell can be additively
split into a tetrahedron part (Wtetr) and one part coming
from the truss elements (Wtruss j j = 1, . . . 6):

W = �

4
(J 2 − 1 − 2 ln J )

︸ ︷︷ ︸

Wtetr

+
6

∑

j=1

1

A0 j L0 j
fchaink n j�

[

λchain j√
n j

β j + ln
β j

sinh β j

]

︸ ︷︷ ︸

Wtruss j

(1)

Figure 2 Finite element unit cell with one tetrahedral element and six
truss elements. Enlarged: fchain chains per truss element.
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In Equation 1 the first summand Wtetr of the split,
originally introduced by [26] and investigated in fur-
ther detail by [27], describes the energy function of the
tetrahedral element. Here J = det F is the determi-
nant of the macroscopic deformation gradient F and �

denotes the Lamè constant. This part of the unit cell
takes care of the volumetric stiffness. The second part
of Equation 1 (Wtruss j ) represents the contribution of
the polymer chains. Here λchain j = r j/r0 j = L j/L0 j

denotes the stretch of the single chain (micro scale) as
well as the stretch of the truss element (macro scale).
The assumption that the chain stretch is equal to the
truss stretch marks the point of the micro-macro tran-
sition. The parameter k denotes the Boltzmann’s con-
stant, n j the number of segments of chain j and � the
absolute temperature. The inverse Langevin function
β can be described in form of a series expansion with
different numbers of approximation terms (here called
TA). This number of approximations terms contributes
to the quality of the approximation, depending on the
deformation state. For more details of these parameters
see [1]. It is also possible to use other approximations
like the Padé approximation e.g. used in [28].

Further unknown in Equation 1 are the cross-section
A0 j and the length L0 j of the undeformed truss ele-
ment. As will be shown in the following (see Equation
3) these quantities can be cancelled. Therefore it is not
necessary to carry out the difficult task to choose phys-
ically reasonable values for them. It can be considered
to be an important advantage of the present concept
that the results are independent of A0 j and L0 j .

An important factor to judge the computational effi-
ciency of the approach is fchain = N/Ntruss which de-
scribes the ratio between N , the number of polymer
chains per reference volume and Ntruss, the number of
truss elements in the same reference volume. To achieve

optimum numerical efficiency the parameter must be
chosen as large as possible, i.e. one strives to work
with as few truss elements as possible. On the other
hand convergence has to be guaranteed, see [1]. This is
the case when a further increase of truss elements does
not alter the macroscopic result.

To implement the Helmholtz free energy function
into the finite element formulation we establish the
weak form of the balance of linear momentum (volume
force and inertia term being neglected) as

g =
nz

∑

z=1

gint z + gext = 0 (2)

In Equation 2 nz denotes the number of unit cells.
The term gint z represents the virtual work of the internal
forces and gext the contribution of the external loading.
After some calculations the following expression for
gint z is obtained:

gint z = δUT
z fchain

6
∑

j=1

∫ 1

−1
BT

chain j

∂Wchain j

∂λchain j

1

2
dξ j

︸ ︷︷ ︸

gtruss
int z := δUT

z Rtruss
z

+ δUT
z BT

tetr 0
∂Wtetr

∂ J

∣

∣

∣

∣

0

V0 z

︸ ︷︷ ︸

gtetr
int z := δUT

z Rtetr
z

(3)

In Equation 3 the vector Uz contains the correspond-
ing twelve degrees-of-freedom. The matrix Bchain j de-
pends on the derivatives of the three displacement
components u, v and w (interpolated by linear shape
functions), for more details see [29]. Analogous to
λchain j = Bchain j Uz , the quantity J is expressed by
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J = Btetr Uz , where the vector Btetr is a function of the
so-called tetrahedral coordinates (cp. [30]).

3. Validations
3.1. Comparison with statistically-based

models based on Treloar’s data
In this section we compare the results of the pro-
posed approach with the ones of other well-known
statistically-based material laws (see Table I) using
experimental measurements. For the first comparison
we use the data of Treloar for vulcanized rubber [25].
Three deformation states were investigated: uniaxial
tension, pure shear and biaxial tension. To enforce
(near-)incompressibility the penalty method is used.
Due to the fact that we do not present the statistical
models in the volumetric-deviatoric decoupled form,
the penalty parameter is here the Lamè constant �.
A good choice for it is 1000 N/mm2. In Table I the
Helmholtz free energy functions of the used material
models are listed. The first model was introduced
by Wang and Guth [23]. It consists of three orthogo-
nal non-Gaussian chains which deform affinely with
the imposed bulk deformation (cp. Fig. 3a). The au-
thors use the Langevin statistics to account for large
stretches.

A four chain regular tetrahedron model was proposed
by Flory and Rehner [11] for Gaussian chains linked
together at the center of a regular tetrahedron, see Fig.
3b. The free ends of the four chains form the corner
of the tetrahedron and deform affinely. If the junction
point is stationary, the deformation is affine and the
Helmholtz free energy function is equivalent to the
one of the well-known Neo-Hooke model. Treloar [31]
extended the system to include non-Gaussian chains. In
this model the junction point of the network is allowed
to deform non-affinely, i.e. the position of the junction
point is not necessarily at the center of the tetrahedron
and cannot be easily described analytically. Therefore
an explicit expression for the Helmholtz free energy
function of the entire network is not available.

To overcome the problem we follow the procedure
of Treloar [32] which is based on the idea that the
“moving” junction point seeks an equilibrium position
if one assumes that there is no net force acting on
the junction point. Solving this additional equation by
means of the Newton-Raphson scheme it is possible to
calculate an incremental stress-stretch relation which
characterizes the response of the network.

The third network model is the Arruda-Boyce model
[14]. Here eight non-Gaussian chains are linked to-
gether in the middle of a cube, see Fig. 3c. Independent

Figure 3 Geometrical illustration of network models: (a) Wang-Guth model, (b) Flory-Rehner model, (a) Arruda-Boyce model.

Figure 4 Results of the uniaxial tension simulations.
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Figure 5 Results of the pure shear simulations.

Figure 6 Results of the biaxial tension simulations.

of the deformation state the affinely deforming chains
are loaded by tension.

Motivated by the fact that the Wang-Guth model
overestimates the stiffness of the network while the
Arruda-Boyce model gives a lower bound, Wu and van
der Giessen established a so-called subnetwork model
[33] and [34]. In Table I the Helmholtz free energy
function of this model is shown. The approach uses
two material parameters and another parameter ρ to
model a linear combination of the Wang-Guth model
and the Arruda-Boyce model.

The material parameters of the different models (cp.
Table I) are determined by means of a fitting pro-
cedure where all three deformation states are taken
into account simultaneously. The parameters of the
present approach read n = 5.1 and N = 7.975 ·
1016 mm−3. Further we work with Ntruss = N/ fchain

truss elements ( fchain = 8.968 · 1012) and 7 terms in
the Langevin function. The penalty parameter � is set
to be equal to 1000 N/mm2. In all simulations k and
� are equal to 1.380662 · 10−20 Nmm/K and 273 K,
respectively.
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In the following figures the abscissae represents the
extension in form of the stretch λ and the ordinate
the 1. Piola-Kirchhoff stress defined as force divided
by the area of the unstrained cross-section. At first
we compare the uniaxial tension simulations with the
experimental data, see Fig. 4. Here all models show
good agreement with the experimental data.

The results of the pure shear test are plotted in Fig. 5.
Here the Flory-Rehner model exhibits in general a too
soft material behaviour. The other models underesti-
mate the stress in the small strain regime whereas in
the large stretch domain too high stress values are ob-
served. However, the overall agreement with the data
can be considered to be satisfactory.

The last experiment to be investigated is the biaxial
tension test. The results are plotted in Fig. 6. In com-
parison to the pure shear deformation state the Flory-
Rehner model again shows a too soft material response.
This fact is, although not to such an extent as for the
Flory-Rehner model, also exhibited by the Wang-Guth
model and the subnetwork model. The best agreement
is achieved by the Arruda-Boyce model and the pro-
posed approach. Furthermore these two concepts show
a similar material behaviour.

In general it can be said that the Arruda-Boyce model
and the proposed model are able to reproduce the ma-
terial response of the experiments in all three deforma-
tion states in a good manner, especially if one takes
into account that these models depend on only two ma-
terial parameters. For the deformation states uniaxial
tension and pure shear all models, with exception of
the Flory-Rehner model in the pure shear experiment,
show more or less good agreement with the experi-
mental data and among each other. Only in the biaxial
tension test, with exception of the Arruda-Boyce model
and the proposed model, all models exhibit dissatisfac-
tory correlation with the data.

3.2. Comparison with experimental data of
three different rubber compounds

For the second validation we use experimental data of
Arruda and Boyce [14]. The authors carry out uniaxial
compression tests and plane strain compression tests
for three different rubber mixtures. The deformation
states uniaxial compression and plane strain compres-
sion represent extremes in the behaviour of polymer
networks. In the uniaxial compression test the speci-
men is stretched in all directions perpendicularly to the
load direction. For the plain strain compression test the
material is held within a channel which constrains the
specimen in such a way that only one direction is free
to move.

Three different rubber compounds were chosen in
this study. The first one is a silicon rubber, the second
one a gum rubber and the last one a neoprene rubber.
For more details of the experimental set-up and the
measurement procedure see [14]. In order to compare
our model with these experiments we chose for all three
mixtures two terms in the Langevin function and the
penalty factor reads � = 1000 N/mm2. The parame-
ters are listed in Table II. In the fitting procedure only
the uniaxial compression test was used.

The results of the simulations in comparison with
the experiments are shown in Fig. 7. The proposed ap-
proach accurately captures the deformation states of all
three materials. If one compares the material response
of the uniaxial compression test and the plane strain
compression test of all three materials it is obvious
that the materials are noticeably different with regard
to stiffness and limiting extensibility. The latter aspect

Figure 7 Comparison between simulations and experiments: (a) silicon
rubber, (b) gum rubber, (c) neoprene rubber.
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can be seen as an additional validation of the suggested
method.

4. Summary
In the present paper we have proposed a micro
mechanically-based finite element concept to model
the deformation behaviour of rubber-like materials. The
main advantage of the suggested concept is that only
physically-based parameters are used. The suggested
method emanates from the idea that these parameters,
namely the number of chain links (n) and the number
of chains per reference volume (N), are easily provided
by the polymer chemist who designs the mixture.

The emphasis of the work lies on the validation
by means of experimental data. In the first step the
correlation of the modelling results with experimental
data of a vulcanized rubber in three different defor-
mation states is investigated. In comparison to other
statistically-based material models it has been found
that the Arruda-Boyce model and the proposed model
are clearly superior to the other employed approaches.

In the second step the parameters of the here shown
concept are adjusted to three different rubber mixtures.
The highly satisfactory agreement of the numerical and
the experimental data illustrates the capability and the
effectiveness of the proposed approach.
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